منابع مشابه
A class of Artinian local rings of homogeneous type
Let $I$ be an ideal in a regular local ring $(R,n)$, we will find bounds on the first and the last Betti numbers of $(A,m)=(R/I,n/I)$. if $A$ is an Artinian ring of the embedding codimension $h$, $I$ has the initial degree $t$ and $mu(m^t)=1$, we call $A$ a {it $t-$extended stretched local ring}. This class of local rings is a natural generalization of the class of stretched ...
متن کاملthe investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
Shepherding of the Uranian Rings. I. Kinematics
We identify several orbital resonances involving the newly discovered satellites, 1986U7 and 1986U8, and the Uranian rings. The most important resonances in eccentric rings are known as eccentric resonances and are generalizations of the more familiar Lindblad resonances. In keeping with the notation established for Lindblad resonances, we distinguish inner and outer eccentric resonances by the...
متن کاملFormal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings
We next want to construct a much larger ring in which infinite sums of multiples of elements of S are allowed. In order to insure that multiplication is well-defined, from now on we assume that S has the following additional property: (#) For all s ∈ S, {(s1, s2) ∈ S × S : s1s2 = s} is finite. Thus, each element of S has only finitely many factorizations as a product of two elements. For exampl...
متن کاملCommutative Local Rings of bounded module type
Let R be a local ring of bounded module type. It is shown that R is an almost maximal valuation ring if there exists a non-maximal prime ideal J such that R/J is an almost maximal valuation domain. We deduce from this that R is almost maximal if one of the following conditions is satisfied: R is a Q-algebra of Krull dimension ≤ 1 or the maximal ideal of R is the union of all non-maximal prime i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1972
ISSN: 0021-8693
DOI: 10.1016/0021-8693(72)90046-4